Newsletter

Otrzymuj jako pierwszy informacje o nowościach i promocjach!

To pole jest wymagane
To pole jest wymagane

Nasz newsletter wysyłany jest zwykle raz na miesiąc.

Statistical Rethinking A Bayesian Course with Examples in R and STAN

Richard McElreath

Statistical Rethinking A Bayesian Course with Examples in R and STAN
Niedostepny
Ostatnio widziany
12.01.2023
€99,60

Zobacz dostępne formy płatności.
:

 
Product info / Cechy produktu
Rodzaj (nośnik) / Item type książka / book
Dział / Department Książki i czasopisma / Books and periodicals
Autor / Author Richard McElreath
Tytuł / Title Statistical Rethinking
Podtytuł / Subtitle A Bayesian Course with Examples in R and STAN
Język / Language angielski
Wydawca / Publisher CRC Press
Rok wydania / Year published 2020
   
Rodzaj oprawy / Cover type Twarda
Wymiary / Size 18.0x26.0
Liczba stron / Pages 594
Ciężar / Weight 1,5680 kg
   
ISBN 9780367139919 (9780367139919)
EAN/UPC 9780367139919
Stan produktu / Condition nowy / new - sprzedajemy wyłącznie nowe nieużywane produkty
Osoba Odpowiedzialna / Responsible Person Osoba Odpowiedzialna / Responsible Person
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work.

The text presents causal inference and generalized linear multilevel models from a simple Bayesian perspective that builds on information theory and maximum entropy. The core material ranges from the basics of regression to advanced multilevel models. It also presents measurement error, missing data, and Gaussian process models for spatial and phylogenetic confounding.

The second edition emphasizes the directed acyclic graph (DAG) approach to causal inference, integrating DAGs into many examples. The new edition also contains new material on the design of prior distributions, splines, ordered categorical predictors, social relations models, cross-validation, importance sampling, instrumental variables, and Hamiltonian Monte Carlo. It ends with an entirely new chapter that goes beyond generalized linear modeling, showing how domain-specific scientific models can be built into statistical analyses.


Książka Statistical Rethinking z wysyłką za granicę


Tagi produktowe